

Multilevel Dynamics & Local Policy in Global Systems Science

Jeffrey Johnson Design-Complexity Group, Open University, UK European FP7 FET TOPDRIM Project

EU-Japan Workshop in Kyoto& Osaka, 21-23 March 2015 Exploring complex socio-techno-environmental systems across the boundary

Global Systems Science

Global Systems - examples

epidemics & health

financial crashes

Global Systems Science

Global Systems - examples

epidemics & health financial crashes cities and populations transportation

Global Systems Science

Global Systems - examples

epidemics & health cities and populations food, water, air financial crashes transportation climate change

Global Systems Science

Global Systems - examples

epidemics & health financial crashes cities and populations transportation food, water, air climate change

GSS - Science for Policy

science to address policy questions tools – policy informatics policy based on scientific evidence engagement policy makers – scientists – citizens

Global Systems Science

Global Systems - examples

epidemics & health financial crashes cities and populations transportation food, water, air climate change

GSS - Science for Policy

science to address policy questions tools – policy informatics policy based on scientific evidence engagement policy makers – scientists - citizens

GSS has emerged from the European Commission.

Global Systems Science

Global Systems - examples

epidemics & health financial crashes cities and populations transportation food, water, air climate change

GSS - Science for Policy

science to address policy questions tools – policy informatics policy based on scientific evidence engagement policy makers – scientists - citizens

GSS - Europe-Japan collaboration?

Global Systems

Global phenomena impact on individuals top-down

The state of the s

But individuals impact on global phenomena bottom-up!

Flu Terrorist attack Fashion Price of bananas CO₂ Emissions Traffic jams Riots & Revolution Twitter ...

Global Systems

Global phenomena impact on individuals top-down

But individuals impact on global phenomena Bottom-up!

Flu Terrorist attack Fashion Price of bananas CO₂ Emissions
Traffic jams
Riots & Revolution
Twitter

Local micro-dynamics matter in global systems

Global System Science and Policy

Fundamental Questions

How can policy makers know the policy will work? How can science inform policy makers at local, national & global scales?

Science

Some systems can be modelled at a single level

Science → Tools for Policy

e.g. TRANSIMS

Bottom-up simulation for road traffic dynamics

e.g. EPIWORK

Simulation of epidemics

Science → Tools for Policy → Engagement

Fundamental Questions

How can policy makers know the policy will work? How can science inform policy makers at local, national & global scales?

How can scientists engage policy makers?

Policy & Science

Point predictions are impossible in complex systems!

How can we know the outcome of policy actions?

Policy & Science Point predictions are impossible in complex systems! How can we know the outcome of policy actions? current state now target state at t

Policy & Science

Point predictions are impossible in complex systems!

How can we know the outcome of policy actions?

What kind of social 'predictions' can science make?

Policy & Sciences of the Artificial

Complex socio-techno-environmental systems are artificial systems!

Policy & Sciences of the Artificial

Complex socio-techno-environmental systems are artificial systems!

Artificial systems are created by accident or design

Policy & Sciences of the Artificial

Complex socio-techno-environmental systems are artificial systems!

Artificial systems are created by accident or design

Policy is designing the future

Design

The requirements & generate – evaluate cycle of design

Design

The requirements & generate – evaluate cycle of design

Requirements and solutions coevolve in design:

Design is a *process* that results in what you think you want from what you think is possible.

Design

The requirements & generate – evaluate cycle of design

Requirements and solutions coevolve in design:

Design is a *process* that results in what you think you want from what you think is possible.

There may be better solutions, but you didn't find them

 ${\rm Fig.~9.5} \quad {\rm The~co-evolution~between~specification~and~design~through~a~generate-evaluate~spiral}$

The design process involves experimenting and learning each time round the coevolutionary cycle

Design

Policy is planning and designing the future

Design is making the system as it ought to be

Design is a process - it takes time

Design is a process – it involves experiment & learning

Design requirements & solutions coevolve

Policy making is a design process (even if not recognised)

Engagement – Investigating Multilevel Dynamics e.g. Tidworth Mums

How can policy makers know the policy will work? How can science inform policy makers at local, national & global scales?

Engagement – Investigating Multilevel Dynamics e.g. Tidworth Mums

How can policy makers know the policy will work? How can science inform policy makers at local, national & global scales?

We can simulate such systems at the microlevel

can investigate different approaches can investigate robustness and **sustainability**

Engagement – Investigating Multilevel Dynamics

e.g. Art in Urban Transformations

Art can be catalytic in social systems $\emph{e.g.}$ Warsaw

Experiment – art in Rochdale

high unemployment many people on welfare many children in deprived families poor self-image

Engagement – Investigating Multilevel Dynamics

e.g. Art in Urban Transformations

Poor/inappropriate social structure

Video?

Global Systems Science for Sustainable Policy

long term persistence of some features e.g. human beings, literature, science,...

Do no harm ... Avoid N-S ML system trajectories

Simulating changing non-sustainable behaviour?

Evidence-based science better than guesswork

Conclusions – Global System Science for Policy

- We live in a global system
- Global systems have local bottom-up dynamics
- Simulation the only way to explore some systems
- Systems can (will!) be simulated at the micro-level
- GSS will develop new multilevel theory
- GSS can inform dynamics and sustainability
- Global System Science tools policy engagement
- Europe Japan collaboration for GSS ?
- GSS Roadmap now being written join us!

email - jeff.johnson@open.ac.uk