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Our view of (complex) emergent behavior 

node dynamics  +  interaction network  =  complex system 
 
 

+ = 

Each node has a state 
which it changes over time 

Nodes interact with each other 
i.e., their states influence each other 

The systemic behavior is complex 
compared to an individual node 

problem 



Research questions 

•  How much ‘individual behavior’ flows into ‘systemic 
behavior’? 
•  à which nodes dominate the systemic behavior? 

•  How resilient is a systemic behavior? 
•  Measuring resilience in real data, financial derivatives 

i.e., how much impact has node X on system S 



First things first: how to measure 
‘causal impact’ 
•  Suppose an isolated 

model AàB where one 
stochastic variable (A) 
influences another (B) 

•  P(B|A) encodes the full causality relation 
•  Unfortunately, for complex systems we cannot solve for the full 

causality model (given only local rules) 
•  This is the birth right of complexity science 

•  What if we study only how much influence? Not how? 
•  Lesser aspect of full causality, hopefully more feasible 

•  Need an impact measure that can handle many types of P(B|A) 

Variable A 

state state 

Causal  
relation 

Variable B 
P(B|A) 

E.g., P(neuron2|neuron1) à P(brain | neuron1) 



Entropy of a coin flip 
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The outcome of the coin flip 
carries 1 bit of information 
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The outcome of the coin flip 
carries 0 bits of information 

I.e., I need 1 bit to fully describe the 
outcome of the coin flip 

I.e., I need 0 bits to fully describe the 
outcome of the coin flip 
(it is already known beforehand) 
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Mutual information 
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X = 0 or 1? Transform 

•  Noise 
•  (Non-linear) function 
•  … 

X Y
Communication 

channel 
inference 
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How much information was transferred? Examples: 
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0 bits were transferred (no transmission) 



Mutual information 

How much information was transferred? In general: 
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A priori uncertainty 

Remaining uncertainty after knowing Y 
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In direct formula: 
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Mutual information 
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How much information was transferred? In general: 
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A priori uncertainty 

Remaining uncertainty after knowing Y 
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Information flow: 1D sequence of variables 
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Information dissipation length (or time) 
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•  How far does the information flow?  
(before it dissipates) 

•  Measure of distance of causal impact! 
1/ f

I expect a characteristic decay rate 
of        , because all     are equivalent 

Write down the decay rate at distance    : 
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Information dissipation length (or time) 
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Now we have the rate. Let us define the 
IDL (IDT) as the distance (time) it takes for  
information to reach 50% of its original value 
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It looks like: 

Great! Let’s go from 1D to a network! 



Information dissipation 

In
fo

rm
at

io
n 

di
ss

ip
at

io
n 

tim
e 

Information dissipation length 

measures of influence of a single node 
on the behavior of the entire network! 

How long is the information 
about a node’s state 

retained in the network? 

How far can the information 
about a node’s state reach 

before it is lost? 



Information dissipation time 

•  Now we compute the IDT of each node in a network  

•  Intuitively, approximate a network as a set of 1D variable sequences 

•  Edges represent an interaction potential to which a node can quasi-
equilibrate 

•  à Node dynamics: (local) Gibbs measure: 

•  Can be seen as generalized Ising spin model 
•  Network structure 

•  Locally tree-like (i.e., no short loops) 

•  E.g., large and  

no community-structure / modularity 

•  Any degree distribution can be chosen 
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Information dissipation time 
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Results: analytical and numerical 

Number of interactions 
of a node 
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analytical proof: D(s) will eventually be 
a decreasing function of ks 



Qualitative evidence from experiments 
Network of neurons 

cultured in a Petri dish 
Social network of 

word-of-mouth marketing 
Gene regulation 

network 

#1 #2 #3 



Susceptibility,  
systemic resilience 
•  Suppose now I can quantify the causal impact of one agent on the 

entire networked system 

•  Duration of causal impact ~ IDT 

•  Distance of causal impact ~ IDL 
•  This leads to a measure of susceptibility, i.e., resilience! 

•  The higher the IDT of a single node, the more impact has a small 

(local) perturbation on the entire system 

•  Financial markets? Systemic resilience? 

•  Can we estimate it from real data? Lehman Brothers collapse? 

Variable A 

state state 

Causal  
relation 

Variable B 
P(B|A) 



Interest-rate swaps (IRS) market 

•  In 2008, Lehman Brothers collapsed, ushering in a decade of crisis 
•  The IRS market is the largest financial derivatives market 

•  Basically, agents trade risk with other agents (!) 
•  My colleague Dr. Drona Kandhai works at ING (Risk department) 

•  Dataset: a set of timeseries of rates of different types of IRS 
•  I have NO network structure, and NO data per agent… And I will never get it either! 

•  Question: can we still estimate the susceptibility? 



Introduction: risk trading 
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Time 

•  If a person gets a € 200,000 
mortgage at 5% interest rate 
that is fixed for 10 years… 

! The bank runs a risk  

Interest-rate for floating loan 

mortgage? 



€ 200,000 
at 5%, fixed 
for 10 years 

lend 

€ 350,000 
at 3%, fixed 
daily 

borrow 

€ 150,000 
at 4%, fixed 
yearly 

lend 

Risk profile 

Hedge risk ! swap 

Not only banks! Think of… 
•  Insurance companies 
•  Pension funds 
•  Car dealerships 
•  … 
•  (Vestia…) 



Interest rate swap ! zero risk 

#2 

#1 

swap 

swap contract 

(And still make money) 



Idea: IRS market ! propagating failure 

swap 

A bank’s position in this network of  
swap contracts makes its risk (almost) zero 

If one bank gets into trouble, then its neighbors 
get into trouble to some extent… 

…And then the neighbors-of-neighbors get 
into trouble to some lesser extent, and so on 



Solution: use ‘public’ data: daily IRS rates 

swap 

•  Swap rates, daily average 
•  for maturities 1, 2, …, 15, 30 
•  Data’s time span: 12 years 
•  Both USD and EUR market 

USD 

EUR 



A B C 

short-term 

long-term 

short-term long-term 

The heterogeneity of maturities in the market… 

…creates a correlation 
between the IRS rates 
of different maturities 

Inferring instability from the data #1 

This is our first 
postulate 



Inferring instability from the data 

A B C 

short-term 

long-term 

short-term long-term 

…and the more swaps are traded… 

…the stronger this 
cross-maturity 
correlation… 

#1 

This is our first 
postulate 



Inferring instability from the data #2 
swap contract 

 
X years 

swap contract 
 

X-1 years 

swap contract 
 

1 years 
≈ + 

+ forward fee for 1-IRS 
being X-1 years into future 

This is our second 
postulate 

swap contract 
 

X-1 years 

swap contract 
 

X-2 years 

swap contract 
 

1 years ≈ +

+ similar fee… 

…and so on… 



Consequence of #1 and #2: 1-dim. system 

1-year IRS 
rate (%) 

2-year IRS 
rate (%) 

3-year IRS 
rate (%) … 

causal relation 

•  The rates (%) of the IRS of different maturities form a 1D system: 

•  The more dense is the ‘swap network’ à the stronger the causal relations 
between the maturities à the farther a perturbation can travel through 
this 1D-system of rates 

1-year IRS 
rate (%) 

2-year IRS 
rate (%) 

3-year IRS 
rate (%) … 



Results 



Results: well-known indicators fail 
consequence, 
not cause 
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