Topological Data Analysis Applied to Idiotypic Network

Matteo Rucco1
F. Castiglione2, E. Merelli 1
matteo.rucco@unicam.it

1University of Camerino - 2Institute for Computing Applications (IAC) ”M. Picone”

February 25, 2015
Theoretical introduction
 Topological data analysis
 Clique Weight Rank Persistent Homology (CWRPH)

Experiment: Topological Data Analysis of Idiotypic Network
 Idiotypic network
 Simulation
 Persistent Entropy
 Topological-holes analysis: communities detection

Conclusions
TOPDRIM - Topology driven methods for complex systems

The goal of this project is to provide methods driven by the topology of data for describing the dynamics of multi-level complex systems

http://www.topdrim.eu
Topological Data Analysis for studying Complex Systems

Topological Data Analysis (TDA) is a subarea of computational topology that develops topological techniques for robust analysis of *scientific data: point cloud and complex networks*.

- In Petri et al. (2014), topological methods have been applied for understanding the effect of psilocybin.
- In Reidys et al. (2011), topological methods have been used for predicting RNA pseudoknots.
Simplicial Complex

A topological space is generated by simplicies (a convex hull of \(k+1\) vertices):

A nested collection of simplices is a simplicial complex.

More formally: a simplicial complex \(K\) on a finite set \(V = \{v_1, v_2, \ldots, v_n\}\) of vertices is a non-empty subset of the power set of \(V\), so that the simplicial complex \(K\) is closed under the formation of subsets.
HOW TO BUILT A SIMPLICIAL COMPLEX

Vietoris-Rips, Witness, Neighborhood, Clique-complexes

Left: example of Vietoris-Rips. Right: example of landscape analysis
Persistent Homology - Filtration

The basic aim of persistent homology is to measure the lifetime of certain topological properties of a simplicial complex (s.c.) when simplices are added to the complex or removed from it.

At each stage of filtration a simplex is added (red). The intuitive notion of Betti numbers as the number of k-dimensional holes is clear in this representation.
Visualization of persistence homology: Betti barcodes

Persistent homology represents an algebraic invariant that detects the birth and death of each topological features. It is advantageous to encode the persistent homology in the form of a parameterized version of Betti numbers.
Clique

A **clique** of a graph G is a complete subgraph of G ($d(G) = 1$), and the clique of largest possible size is referred to as a **maximum clique**.

A **maximal clique** is a clique that cannot be extended by including one more adjacent vertex, meaning it is not a subset of a larger clique. Maximum cliques are therefore maximal cliqued (but not necessarily vice versa).
A recent development in Topological Data Analysis (TDA) providing a new approach to the study of weighted networks that allows to recover complete and accurate long-range information from noisy redundant network, by building on persistent homology.

This work has been inspired by...

The S[B] model mimics the interplay capabilities of the immune system to identify, classify and learn new patterns.
Immune System: The Idiotypic Network

An increase in the first antibody, AB1, recognized by AB2, would lead to an increase of the latter. The same would be seen regarding AB2, AB3, and so forth, always showing a tendency to restore the equilibrium of the system: immune memory.

Idiotypic network is formed by a chain of antibodies Abs. Two Abs are connected if and only if they show **Affinity**.
EXPERIMENTAL SETUP

Idiotypic Network has been simulated by the agent model based simulator *C-ImmSim*. Two simulations have been executed, in the first simulation the antigen has been injected only once while in the second simulation the injection has been executed twice and repeated with three configurations: \([Ag_2] = [Ag_1]\), \([Ag_2] > [Ag_1]\), \([Ag_2] < [Ag_1]\).

Graph pre-processing has been computed with *Matlab*, while TDA has been executed by *jHoles*.
FROM AFFINITY TO COEXISTENCE

The Idiotypic Network is represented as a weighted graph where the weight function is the pairwise Hamming distance between antibodies: the Affinity - $\text{Aff}(\text{Ab}_i, \text{Ab}_j)$ matrix.

Instead of $\text{Aff}(\text{Ab}_i, \text{Ab}_j)$ it is possible to use the so-called coexistence function $C_{\text{Ab}_{i,j}}(t)$:

$$C_{\text{Ab}_{i,j}}(t) = \frac{\text{Aff}(\text{Ab}_i(t), \text{Ab}_j(t)) \ast [\text{Ab}_i(t)] \ast [\text{Ab}_j(t)]}{\sum_{k=1}^{n}[\text{Ab}_k(t)]}$$

(1)

For lower values of Affinity the concentration must be more significant, the match between antibodies is less probable.
Persistent Entropy

Instead of computing an entropy for graph I defined an entropy Shannon-like based on *persistent homology*.

Def Persistent entropy: given a filtered topological space equipped with an ascending filtration algorithm, the set of filtration value F and the corresponding persistence bar-code $B = [a_j ; b_j] : j \in J$. A persistent line in a bar-code is conventionally represented as $[a_j ; \infty)$ here it is substitute with $[a_j ; m)$ where $m=(\max\{F\} + 1)$.

\[
E(F) = - \sum_{j \in J} p_j \log(p_j) \tag{2}
\]

Where $p_j = l_j/L$, $l_j = b_j - a_j$, and $L = \sum_{j \in J} l_j$
Remarks on Persistent Entropy

From an information-theoretic view point, we have to interpret the number of significant intervals as the coding length. Entropy measures how different bars of the barcodes are in length. A barcode with uniform lengths has small entropy.
Average Persistent Entropy versus Time [Tick]

Left: IS stimulated once. Right: IS stimulated twice. A peak indicates the *immune activation*, the plateau indicates the *immune memory*.

Statistics over 100 trials.
TOPOLOGICAL-HOLES ANALYSIS: COMMUNITIES DETECTION

Topological-holes are formed by *generators*: $0, 1, 2, \ldots, n$-simplices.

From the loop frequency analysis we found a loop present in both the *immune responses* and in the *immune memory*: $[1, 2] + [2, 7] + [7, 13] + [1, 13]$.

![Diagram showing antibody frequency]

- Ab1
- Ab2
- Ab7
- Ab13
CONCLUDING REMARKS

TDA efficiently recognizes the persistent holes and their generators: the antibodies and how Ab_s are connected. Its computational complexity in the worst case is $O(n^2)$

Persistent entropy allows to study the roles of the persistent antibodies highlighting that they have the central role both in the functional and connectivity stability of the networks.
REFERENCES

We acknowledge the financial support of the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme (FP7) for Research of the European Commission, under the FP7 FET-Proactive Call 8 - DyMCS, Grant Agreement TOPDRIM, number FP7-ICT-318121.