
CS2Bio 2014

jHoles: a tool for understanding biological

complex networks via clique weight rank

persistent homology

Jacopo Binchia, Emanuela Merellia, Matteo Ruccoa 1

aSchool of Science and Technology, Computer Science Division, University of Camerino,
Camerino, Italy

Giovanni Petrib, Francesco Vaccarinob,c

bISI Foundation, Torino, Italy. cDipartimento di Scienze Matematiche, Politecnico di Torino,
Torino, Italy

Abstract

Complex networks equipped with topological data analysis are one of the promising tools in the
study of biological systems (e.g. evolution dynamics, brain correlation, breast cancer diagnosis,
etc. . .). In this paper, we propose jHoles, a new version of Holes, an algorithms based on persistent
homology for studying the connectivity features of complex networks. jHoles fills the lack of an
efficient implementation of the filtering process for clique weight rank homology. We will give a
brief overview of Holes, a more detailed description of jHoles algorithm, its implementation and
the problem of clique weight rank homology. We present a biological case study showing how the
connectivity of epidermal cells changes in response to a tumor presence. The biological network
has been derived from the proliferative, differentiated and stratum corneum compartments, and
jHoles used for studying variation of the connectivity.

Keywords: Complex networks, Biological networks, Tumor diagnosys, Computational topology,
Betti number

1 Introduction

Complex networks are one of the most used tool for studying complex sys-
tems. In particular, weighted networks are becoming a more and more impor-
tant tool to detect either the presence and the intensity of relations among

1 Email: matteo.rucco@unicam.it - Corresponding author

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:matteo.rucco@unicam.it

Rucco et al.

groups of nodes in a network. Topological data analysis (TDA for short) is
a subarea of computational topology that develops topological techniques for
robust analysis of scientific data. Topology is the branch of geometry that
studies shapes, it classifies objects according to properties that do not change
under certain feasible transformations to capture more qualitative information
about shapes. In mathematics (especially algebraic topology and abstract al-
gebra), in algebraic topology homology is a general procedure to associate a
sequence of abelian groups to build a topological space while in computationa
topology persistent homology introduce the concept of filtration of simplicial
complexes [3].
Recently, TDA has been applied in several studies of biological systems, for
example Nicolau et al. [9], have defined a method that extracts information
from high-throughput microarray data, the use of topology derive a more qual-
itative information than current analytic techniques. This identified a unique
subgroup of Estrogen Receptor-positive (ER+) breast cancers that express
high levels of c-MYB and low levels of innate inflammatory genes. In [4],
Chan et al., have applied topological methods to extend the limits of the phy-
logenetic tree for understanding the viral evolution.
Weight clique rank homology is a recent TDA technique, proposed by [11],
meant to study complex networks, that allows to recover complete and ac-
curate long-range information from noisy redundant network, by building on
persistent homology. This first implementation of this technique has been
proposed in Holes. In this work we implemented this new technique in a
Java software suite named jHoles and available at [12]. Its core is a Java API
efficiently implementing some algorithms to compute weighted clique rank ho-
mology. jHoles is the natural evolution of Holes, a Python package developed
by Giovanni Petri within the EU funded project ”Topdrim” [10]. jHoles is
based on javaPlex [13,15,5]. jHoles fills the lack of an efficient implementation
of the filtering process for clique weight rank homology. The main purpose
of this paper is to give an overview of jHoles features, starting with a short
introduction to the Clique Weight Rank Persistent Homology problem, dis-
cussing the algorithms and its implementation. We conclude with a biological
case study showing how change the local connectivity of epidermal cells in
response to a tumor presence. In appendix are given some useful definitions
for graph theory, algebraic and computational topology.

2 Clique Weight Rank Persistent Homology

Clique weight rank persistent homology, sometimes referred as clique weight
rank homology (CWRH or CWRPH for short), is a recent development in
TDA, providing a new approach to the study of weighted networks. One of the
main advantages of this approach is that it preserves the complete topological

2

Rucco et al.

and weight information, allowing us to focus on special mesoscopic structures:
weighted network holes, that connect the network’s weight-degree structure to
its homological backbone [11].

2.1 Holes Algorithm

Holes is the first implementation of the clique weight rank persistent homology.
The algorithm is based on the construction of a filtered simplicial complex,
starting from all the maximal cliques of a network. The algorithm is structured
as it follows:

- By varying the discrete parameter t scanning the sorted list of weight wt

of edges, build the subgraph with only edge-weights bigger than wt. The
sorting order is not relevant, it could be either descending or ascending; in
this paper we will always refer to the standard descending CWRH.

- For each subgraph, find its maximal cliques.

- For each clique found, mark its rank t and its threshold wt, then add it to
the complex if not present yet (i.e. a clique should be added only the first
time that it is found).

- For each element of the complex of size n, compute every combination from
0 to n of its elements to find missed faces.

Now we have a filtered simplicial complex that we may study with the preferred
tool (for Holes it is javaPlex).
Even if this technique is really strong for weighted networks analysis, it has
some open issues from a computational point of view. We realized by empirical
measures that the 90% of Holes execution time is spent loading the graph (5-
10%) and in the filtration process, while the rest (usually less than 10%) is
spent calculating persistent homology. This is caused mostly by the clique
finding problem; we recall that a clique is a complete subgraph of a graph
(i.e. each node of the subgraph is connected with all the other nodes). The
clique finding problem is a NP-Complete problem, and it is commonly assumed
to run in O(3

n
3), since this is the maximum number of possible cliques in a

graph [8]. At each index t, Holes recomputes the list of maximal cliques for
the subgraph. Thus, it is recomputing the same thing for all the time, since
maximal cliques of a graph contains every other possible clique [14]. Moreover,
this approach depends both on the density of the graph and on the number of
different weights assigned to edges: for large networks this becomes a problem.

2.2 jHoles

jHoles is the main outcome of this study. It is a Java API implementing the
same functionalities of Holes but using efficient, fast algorithms. It is thought
to be as fast as possible, it solves many of the problems related to memory

3

Rucco et al.

management and it adapts to the computer on which it is running (i.e. ac-
cording the number of threads that are executed at the same time with the
number of processors). jHoles is available at [12]. jHoles is written in Java
as it is a powerful, flexible language that is widely used by the scientific com-
munity 2 . Moreover, Java is free and comes with a complete framework. As
jHoles is developed in Java, it is compatible with every operating system that
supports a JVM, but it requires Java 1.7. jHoles persistent homology engine
is javaP lex, a Java library that offers all the needed methods to compute per-
sistent homology (for more information refer to [13]). We choose javaPlex as
it is one of the best software for computing persistent homology and, most im-
portant, it is far far better documented than the others. We choose JGraphT
as data structure to handle graphs [1].
jHoles is designed to be easily used even by non computer scientists. Its main
point of access is jHoles, a class offering all the methods to process a graph.
This architectural choice was made to keep it simple to use, grouping in a sin-
gle class its core functions. This interface comes with some pre-made, multi-
threaded parsers for files, supporting GEXF files, ”edge list” files (sometimes
referred as ”sparse matrix representation” i.e. in Matlab) or a plain text file
representing a matrix. It offers different methods to filter the network: one,
marked as deprecated, uses Holes original algorithm; the others are various
implementations of the improved algorithm: the difference is mainly in the op-
timization, e.g. how many threads the library should use, where to use caching
technologies or to thread pooling to reduce the overhead. It is currently under
active development a paged data structure to store the simplicial complex, as
its dimensions may grow up easily: its aim is to avoid computational limits
(i.e. the computer which it is running on has not enough RAM) at the price
of some speed. The result of the filtration is stored in a Hash Map provided
by the Java Runtime Environment.
jHoles maintains compatibility with Python, providing some methods to:

- Store the output of the computation maintaining compatibility with Holes.

- Serialize the simplicial complex in the form of a dictionary to be reloaded
later with Pickle or cPickle.

It offers some basic analysis tools too, like some measurements of the graph
(i.e. density, local density, average degree...) and some statistical analysis of
the output (i.e. network hollowness).
jHoles main difference with Holes is its filtration algorithm. We may start
from two observations about graphs and clique to improve Holes algorithm.

2 The syntax for the jar-file execution is: java -jar jHoles path to input edge list
path to summarized output path to extendend output - For technical issues about the ex-
ecution, the JVM configuration, etc. . . please refer to jacopo.binchi@studenti.unicam.it

4

Rucco et al.

Let G be a graph and v a vertex:

1 For every maximal clique C of G \ v, either C continues to form a maximal
clique in G, or C∪v forms a maximal clique in G. Therefore, G has at least
as many maximal cliques as G \ v does.

2 Each maximal clique in G that does not contain v is a maximal clique in
G\v, and each maximal clique in G that does contain v can be formed from
a maximal clique C in G \ v by adding v and removing the non-neighbors
of v from C.

For other details, see [14]. From this point of view, we can easily summarize
these observations in two cases. Let Ct be a clique at the step t, then there
exist two possibilities:

- Ct is a maximal clique for Gt;

- Ct is a subgraph of a maximal clique in Gt;

This is really important because it allows us to build a more efficient algo-
rithm. Holes algorithm adopts a constructive approach, but it is slow and
heavy in terms of computation and resources, so we want to propose a differ-
ent approach. We now know that if we want all the cliques in a graph, then
they are either a subset of a maximal clique of the graph or a maximal clique.
Then we can run the Bron-Kerbosch algorithm for the entire graph and then
find all the other cliques looping on each maximal clique. So, the first three
steps are:

Algorithm 1 - Initial steps
Step 1: Extract the sorted list of weights of G.
Step 2: List all the maximal cliques in G.
Step 3: For each maximal clique found, find all its subcliques.

In order to build the complex, we now need to rank these cliques: we now
loop on each found clique to rank it. We actually look at each edge to found
the minimum weight, that will correspond to the t− th step of the filter. We
then assign a label containing the step and the minimum weight to the clique.
So, we add another few steps to our new algorithm.

Algorithm 2 - Final steps
Step 4: For each found clique, extract the list of its edges.
Step 4.1: For each edge, find the minimum weight. This is the rank of the
clique.
Step 4.2: Look at the sorted list of weights to find the index corresponding to
the clique rank.
Step 5: Put a label to the clique containing the rank and the weight.

5

Rucco et al.

This approach is really much faster than the previous one and it requires
significantly less resources. Moreover, step 3 and steps from 4 to 5 can be
executed in parallel. In fact, we can decompose each maximal clique inde-
pendently from the others, and we can rank each clique (or set of cliques)
separately from the others. A parallel implementation significantly improves
performance on modern computers.

2.2.1 jHoles: network statistics

The last version of jHoles allows the user to calculate the most important net-
work statistics that are the basis of most network analysis (e.g., for their com-
parison, classification, anomalies detection etc. . .) [7]. The following statistics
are computed: size, volume, average degree, maximum degree, clustering coef-
ficient (local and average), negativity and networks weight.

3 jHoles performance evaluation

Several tests for the performance evaluation of jHoles have been executed,
in this section we will provide a short description of the datasets and of our
results. For the sake of clarity, the platform that has been used for the compu-
tation is a middle-end desktop computer equipped with a quad-core processor
and 4GB of RAM. It has a SSD hard drive to reduce loading time and the
bottleneck usually represented by hard drives. Here the full configuration:

- CPU: Intel i5-2500k @4Ghz Turbo Boost disabled, Energy Saving disabled

- MB: AsRock Pro 3 Gen 3 z68 rev. B2

- RAM: 2x2GB DDR3 modules @1866mhz cl.7

- HDD: 128GB SSD

- OS: Windows 7 pro 64 bit Service Pack 1

Tests were executed with Java 1.7, python 2.7, jython 1.5 and mySQL 5.6

3.1 Datasets

3.1.1 US 2000 air passenger network

The network refers to the year 2000. The data used are publicly available
from the website of the Bureau of Transportation Statistics 3 . Individual
flights between airports were aggregated on routes as defined by origin and
destination cities. The weight reported is the yearly aggregated passenger
traffic.

3 http://www.transtats.bts.gov/

6

Rucco et al.

3.1.2 C. Elegans neuron network

The network is a directed representation of the C. Elegans’s neuronal net-
work 4 . The network was symmetrized by summing the weights present on
edges between the same nodes.

3.1.3 Twitter dataset

The dataset consists of a sample network of mentions and retweet between
Twitter users and is available online on the Gephi dataset page 5 . Weights
are proportional to the number of interactions between a pair of users.

3.1.4 Human gene

The gene interaction network used in the paper is a sampling of the complete
human genome dataset available from the University of Florida Sparse Matrix
Collection. Each node is an individual gene, while the edges correlates the
expression level of a gene with that of the genes. The node set of the analyzed
network was obtained by randomly choosing an origin node, then adding its
neighborhood to the node set; the neighborhoods of the newly added nodes
were then added to the node set recursively until a given number of nodes was
obtained (in the case used the target number of nodes was N = 1300). Then
all the edges present in the original network between the nodes in the node set
were added, effectively taking a connected subgraph of the original network.
To reduce the computational complexity due to the large density of the graph,
the weighted clique fltration was stopped at an edge weight of 0.09.

3.1.5 Random generated datasets

We generated a few random graphs to show that jHoles performances are not
influenced by the number of weights in the graph. We generated three graph,
with density ∼= 1, the first has |W | = 10, the second 1000 and the third 20000.
This means that Holes algorithm needs respectively 10, 1000 and 20000 steps
to stop, while jHoles has a constant run time.

3.2 Benchmark results

In this section we provide some graphs showing and studying benchmark
results on these datasets. The first graph shows the time in seconds that
jHoles and Holes took to process the datasets. We stopped the computation
after 25 minutes if it was not complete.

4 http://cdg.columbia.edu/cdg/datasets
5 http://wiki.gephi.org/index.php/Datasets

7

Rucco et al.

Fig. 1. Number of steps/time: Holes - blue line, jHoles - red line

The graph (see Fig. 1) represents the time (in seconds) in function of
the number of steps of the graph. We can see that jHoles (red line) is not
influenced by these parameters.

Fig. 2. Number of archs/time: Holes - blue line, jHoles - red line

The last graph (see Fig. 2) show how jHoles is influenced by the number
of archs in the graph and how much it is more efficient than Holes. The
last change of the slope in the red line (jHoles) corresponds to the paged
dictionary activation.

In general we can conclude that all the following items have been needed

8

Rucco et al.

for the performance improvement:

- A new filtration algorithm.

- The optimizations of the general structure of the algorithm and its execution
policy (e.g. the procedure selecting the right number of threads).

- Usage of properly data structure (e.g. Hash Map).

- Optimization of memory managment (e.g. paged dictionary).

- Full coding with Java.

- Right tuning of the JVM (e.g. heap size, garbage collector, etc. . .).

4 Biological case study: Analysis of epidermal cells be-
fore and after tumor

We applied jHoles for the study of the epidermis before and after a tumor 6 .
The in silico model has been obtained following the indications provided
in [6]. Briefly, models for tumor growth and skin turnover are combined with
pharmacokinetic (PK) and pharmacodynamic (PD) models to assess the
impact of two alternative dosing regimens on efficacy and safety. We studied
the evolution of the topology (or the local connectivity). Epidermal cells
sequentially pass three compartments, named proliferative (pc), differentiated
(dc), and stratum corneum (sc) compartments. We obtained a network
representation of the compartments connecting the cells using both their
ammisible evolution (i.e., proliferative are connected only with differentiated
and differentiated with stratum) and their concentration. The statistics of
the networks are:

Before the tumor (see Fig.3): After the tumor: (see Fig.4)

Number of Nodes: 98 Number of Nodes: 48

Number of Links: 393 Number of Links: 269

Average Node Degree: 4.01 Average Node Degree: 5.60

Average Clustering Coefficient: 0.190 Average Clustering Coefficient: 0.165

The homological analysis of the network for the healthy epidermis shows a
higher number of holes that means a more spread cells distribution (the Betti
numbers sequence: β0 = 1 and β1 = 28698), due to the presence of the three
compartments. After the tumor the topology of network changed and the new

6 The dataset is available at http://cuda.unicam.it/jHoles/dataset/

9

Rucco et al.

sequence of Betti number is β0 = 1 and β1 = 24698 with a reduced number of
holes that means healthy cells disappeared and the network is less connected.

Fig. 3. Network of healthy epidermis

Fig. 4. Network of pathological epidermis

4.1 Conclusion and remarks

Currently we are developing a system that will recognize automatically both
the generators of the holes and the persistent hubs, which will therefore allow
both to recognize which type of cells were alive after the tumor. We believe
that topological data analysis can be a useful instrument to study the drug
effect.

10

Rucco et al.

Acknowledgements

We acknowledge the financial support of the Future and Emerging Technolo-
gies (FET) programme within the Seventh Framework Programme (FP7) for
Research of the European Commission, under the FP7 FET-Proactive Call 8
- DyMCS, Grant Agreement TOPDRIM, number FP7-ICT-318121.

References

[1] Jgrapht, free java graph library, Software available at http://www.jgrapht.org.
URL http://www.jgrapht.org

[2] Bondy, J. A. and U. S. R. Murty, “Graph theory with applications,” 6, MacMillan London,
1976.

[3] Carlsson, G., Topology and data, Bulletin of the American Mathematical Society 46 (2009),
pp. 255–308.

[4] Chan, J. M., G. Carlsson and R. Rabadan, Topology of viral evolution, Proceedings of the
National Academy of Sciences 110 (2013), pp. 18566–18571.

[5] De Silva, V., D. Morozov and M. Vejdemo-Johansson, Dualities in persistent (co) homology,
Inverse Problems 27 (2011), p. 124003.

[6] Gieschke, R. and D. Serafin, “Development of Innovative Drugs via Modeling with MATLAB,”
Springer, 2013.

[7] Kunegis, J., Konect: the koblenz network collection, in: Proceedings of the 22nd international
conference on World Wide Web companion, International World Wide Web Conferences
Steering Committee, 2013, pp. 1343–1350.

[8] Moon, J. W. and L. Moser, On cliques in graphs, Israel journal of Mathematics 3 (1965),
pp. 23–28.

[9] Nicolau, M., A. J. Levine and G. Carlsson, Topology based data analysis identifies a subgroup
of breast cancers with a unique mutational profile and excellent survival, Proceedings of the
National Academy of Sciences 108 (2011), pp. 7265–7270.

[10] Petri, G., Holes: python package for persistent homology calculations, ”Software available at
http://lordgrillo.github.com/Holes/” (2013).

[11] Petri, G., M. Scolamiero, I. Donato and F. Vaccarino, Topological strata of weighted complex
networks, PloS one 8 (2013), p. e66506.

[12] Rucco, M. and J. Binchi, jholes: A java high performance package for persistent homology,
”Software available at http://cuda.unicam.it/jHoles/ (2014).

[13] Tausz, A., M. Vejdemo-Johansson and H. Adams, Javaplex: A research software package for
persistent (co)homology, ”Software available at http://code.google.com/javaplex” (2011).

[14] Tsukiyama, S., M. Ide, H. Ariyoshi and I. Shirakawa, A new algorithm for generating all the
maximal independent sets, SIAM Journal on Computing 6 (1977), pp. 505–517.

[15] Zomorodian, A. and G. Carlsson, Computing persistent homology, Discrete & Computational
Geometry 33 (2005), pp. 249–274.

[16] Zomorodian, A. J., “Topology for computing,” 16, Cambridge University Press, 2005.

11

http://www.jgrapht.org

Rucco et al.

Appendix: Useful mathematics definitions

The present work represents an interdisciplinary application from algebraic
topology to graph theory, and an extensive treatment of these topics is not
the main purpose of this paper. Moreover, to make the presentation in this
paper self-contained, in the next subsection we will provide some mathematical
definitions that can be useful to the reader. For a complete treatment of graph
theory, algebraic and computational topology we suggest [2,16].

Graph theory

Definition 1 Graph
A Graph is an ordered pair (V,E) where V is the non-empty, finite set of its
elements (nodes or vertices) and E is the non-empty finite set of its edges
(links, ties or arcs), which are 2-elements subset of V.

Definition 2 Weighted Graph
A weighted graph is an ordered tuple (V,E,W, f), where V is the non-empty,
finite set of its elements, E is the non-empty, finite set of its edges, W is the
finite set of weights such that |W | ≥ 1 and f is a discrete function from E to
W such that it associates each ε ∈ E to one w ∈ W .

Definition 3 Density of a graph
Let G(V,E). Density of G, d(G), is defined as:

d =
2|E|

|V | (|V | − 1)
(1)

the ratio between the size of the graph and its maximum number of edges, so
0≤d(G)≤1.

Definition 4 Clique (complete graph)
Let G(V,E) be an undirected graph (eventually weighted). G is a clique (or
complete graph) if d(G)=1.

Definition 5 Maximum weight clique (for weighted graphs)
Let G and C be two weighted undirected graphs, with C⊆ G and C clique, and
for every edge of C, its weight is bigger (weaker) or equal a certain p. C is a
maximum clique for the weight p if there is no vertex in G with weight bigger
(weaker) or equal p that can extend C and for each clique Si of G, |Si| ≤ |C|.

12

Rucco et al.

Algebraic and Computational Topology

Definition 6 Topology
A topology on a set X is a family T ⊆ 2X such that

- If S1, S2 ∈ T, then S1 ∩ S2 ∈ T (equivalent to: If S1, S2, . . . , Sn ∈ T then
∩n

i=1Si ∈ T)

- If {Sj|j ∈ J} ⊆ T, then ∪j∈JSj ∈ T.
- ∅, X ∈ T.
Definition 7 Topological spaces
The pair (X,T) of a set X and a topology T is a topological space. We will
often use the notation X for a topological space X, with T being understood.

Definition 8 Simplices
Let u0, u1, ..., uk be points in Rd. A point x =

∑k
i=0 λiui is an affine combination

of the ui if the λi sum to 1. The affine hull is the set of affine combinations.
It is a k-plane if the k+1 points are affinely independent by which we mean
that any two affine combinations, x=

∑k
i=0 λiui and y =

∑k
i=0 µiui are the same

iff λi = µi for all i. The k+1 points are affinely independent iff the k vectors
ui . . . u0, for 1 ≤ i ≤ k, are linearly independent. In Rd we can have at most
d linearly independent vectors and therefore at most d+1 affinely independent
points.
k-simplex is the convex hull of k+1 affinely independent points, σ =
{u0, u1, u2, ...uk}. We sometimes say the ui span σ. Its dimension is dimσ = k.
Any subset of affinely independent points is again independent and therefore
also defines a simplex of lower dimension. The special names of the first few
dimensions are:

- vertex for 0-simplex;

- edge for 1-simplex;

- triangle for 2-simplex;

- tetrahedron for 3-simplex;

Definition 9 Face
A face of σ is the convex hull of a non-empty subset of the ui and it is proper
if the subset is not the entire set. We sometimes write τ ≤ σ if τ is a face and
τ < σ if it is a proper face of σ. Since a set of k+1 has 2k+1 subsets, including
empty set, σ has 2k+1 − 1 faces, all of which are proper except for σ itself.
The boundary of σ, denoted as bdσ, is the union of all proper faces, and the
interior is everything else, int σ = σ− bd σ

Definition 10 Simplicial complexes
A simplical complex is a finite collection of simplices K such that σ ∈ K and
τ ∈ K, and σ, σ0 ∈ K implies σ ∩ σ0 is either empty or a face of both.

13

Rucco et al.

Fig. 5. A simplicial complex (left) and a collection of simplices (middle and right) which do not
comprise a sumplicial complex.

Definition 11 Filtration
A filtration of a complex K is a nested sequence of subcomplex, ∅ = K0 ⊆
K1 ⊆ K2 ⊆ ⊆ Km = K. We call a complex K with a filtration a filtered
complex.

Definition 12 Chain group
The k-th chain group of a simplicial complex K is 〈Ck(K),+〉, let F be a field.
The F−linear space on the oriented k-simplices, where [σ] = −[τ] if σ = τ
and σ and τ have different orientations. An element of Ck(K) is a k-chain,∑

q nq[σq], nq ∈ Z, σq ∈ K.

Definition 13 Boundary homomorphism
Let K be a simplicial complex and σ ∈ K, σ = [v0, v1, ..., vk] The boundary
homomorphism ∂k : Ck(K)→ Ck−1(K) is

∂kσ =
∑

i(−1)i[v0, v1, ..., v̂i, ..., vn]

where v̂i indicates that vi is deleted from the sequence.

Definition 14 Cycle and boundary
The k-th cycle group is Zk = ker∂k. A chain that is an element of Zk is a
k-cycle. The k-th boundary group is Bk = im∂k+1. A chain that is an element
of Bk is a k-boundary. We also call boundaries bounding cycles and cycles not
in Bk nonbounding cycles.

Definition 15 Homology group
The k-th homology group is

Hk = Zk/Bk = ker∂k/im∂k+1

If z1 = z2 + Bk, z1, z2 ∈ Zk, we say z1 and z2 are homologous and denote it
with z1 ∼ z2

Definition 16 k-th Betti number
The k-th Betti number Bk of a simplicial complex K is the dimension of the k-th
homology group of K. Informally, β0 is the number of connected components,
β1 is the number of two-dimensional holes or ”handles” and β2 is the number
of three-dimensional holes or ”voids” etc. . . .

14

Rucco et al.

Fig. 6. From graph to simplicial complex with the expression for each simplex.

Definition 17 Invariant
A topological invariant is a property of a topological space which is invariant
under homeomorphisms. Betti numbers are topological invariants.

15

	Introduction
	Clique Weight Rank Persistent Homology
	Holes Algorithm
	jHoles

	jHoles performance evaluation
	Datasets
	Benchmark results

	Biological case study: Analysis of epidermal cells before and after tumor
	Conclusion and remarks

	References

