Hypernetworks and Design for Non-Equilibrium Global Systems Science

Jeffrey Johnson and Yangxue Xiang

The Open University, Milton Keynes, UK
GSDP & NESS European Projects
Alibaba Business School, Hangzhou Normal University, China

Networks can represent relationships between pairs, < x, y > e.g. x trades with y

Networks can represent relationships between pairs, < x, y > e.g. x trades with y

What about relationships between three thing, < x, y, z > e.g. x, y and z form an oligopoly.

Networks can represent relationships between pairs, < x, y > e.g. x trades with y

What about relationships between three thing, < x, y, z >

e.g. x , y and z form an oligopoly. Or a relation between 4 things

Networks can represent relationships between pairs, < x, y >

e.g. x trades with y

Or any number of things ...

(a) line 1-dimensional

(b) triangle 2-dimensional

(c) tetrahedron 3-dimensional

(d) pentahedron 4-dimensional

The generalisation of an edge in a network is a *simplex*Simplices can represent *n*-ary relation between *n* vertices

A 1-simplex $\langle a, b \rangle$ has 2 vertices

A 2-simplex $\langle a, b, c \rangle$ has 3 vertices

A 3-simplex (a, b, c, d) has 4 vertices

A *p*-simplex $\langle v_0, v_1, ... v_p \rangle$ has *p*+1 vertices

The generalisation of an edge in a network is a *simplex*

A *p-dimensional simplex* has *p+1* vertices

From Networks to Hypernetworks

Binary relations & links are essential

But we also need n-ary relations, n > 2

From Networks to Hypernetworks

Binary relations & links are essential

But we also need n-ary relations, n > 2

This is a 3-ary relation Remove any vertex and there cannot be

this transaction

The transaction is a `whole'

Global Systems Science as a 2-simplex (source: Ralph Dum)

From Networks to Hypernetworks

Gestalt Psychologist Katz:

Vanilla Ice Cream ≠ cold + yellow + soft + sweet + vanilla

it is a Gestalt – experienced as a whole

⟨ cold, yellow, soft, sweet, vanilla ⟩

From Networks to Hypernetworks

 $\langle \text{Cold}, \text{Sweet}, \text{Vanilla}, \text{Soft}, \text{Yellow} \rangle \neq \langle \text{Cold} \rangle + \langle \text{Sweet} \rangle + \langle \text{Vanilla} \rangle + \langle \text{Soft} \rangle + \langle \text{Yellow} \rangle$

set of vertices ≠ simplex ≠ clique

 \langle cold, yellow, soft, sweet, vanilla \rangle

Simplices represent wholes

... remove a vertex and the whole ceases to exist.

(a) Remove a vertex and the cyclist simplex ceases to exist (b) Remove a vertex and the perfect gin and tonic ceases to exist

Fig. 4.8 Remove a vertex and the simplex ceases to exist.

Time t

The girls all like each other pairwise

Fig. 4.4 Social dynamics depend on structure

Time t

The girls all like each other pairwise

Time t+1

Two girls gang up on one when they play together as a

2-simplex

Fig. 4.4 Social dynamics depend on structure

Time t

The girls all like each other pairwise

Time t+1

Two girls gang up on one when they play together as a 2-simplex

Time t+2

The 3-way interaction has changed the pairwise relations

Fig. 4.4 Social dynamics depend on structure

Simplices have multidimensional faces

(a) vertices are 0-dimensional faces of 1-dimensional edges

(a) edges are 1-dimensional faces of 2-dimensional triangles

(a) a solid 3-dimensional tetrahedron

(b) the 2-dimensional faces of the tetrahedron

Fig. 4.9 The 2-dimensional triangular faces of a 3-dimensional tetrahedron

Simplices have multidimensional faces

(a) vertices are 0-dimensional faces of 1-dimensional edges

(a) edges are 1-dimensional faces of 2-dimensional triangles

(a) a solid 3-dimensional tetrahedron

(b) the 2-dimensional faces of the tetrahedron

Fig. 4.9 The 2-dimensional triangular faces of a 3-dimensional tetrahedron

A set of simplices with all its faces is called a simplicial complex

Simplices have multidimensional connectivity through their faces

Share a vertex

0 - near

Share an edge

1 - near

Share a triangle

2 - near

A network is a 1-dimensional simplicial complex with some 1-dimensional simplices (edges) connected through their 0-dimensional simplices (vertices)

Multidimensional Connectivity

Multidimensional Connectivity

Multidimensional Connectivity

Q-analysis: listing q-components

(q-percolation)

From Complexes to Hypernetworks

$$\begin{array}{c|cccc}
\ell_{15} & & & \ell_{16} \\
\ell_{13} & & & \ell_{14} \\
\ell_{11} & & & \ell_{12} \\
\ell_{9} & & & \ell_{10} \\
\ell_{7} & & & \ell_{8} \\
\ell_{5} & & & \ell_{6} \\
\ell_{3} & & & \ell_{2}
\end{array}$$

(a) The sun illusion
$$\sigma_1 = \langle \ell_1, ..., \ell_{16}; R_1 \rangle$$

(b) the rectangle illusion
$$\sigma_2 = \langle \ell_1, ..., \ell_{16}; R_2 \rangle$$

Simplices are not rich enough to discriminate things

Same parts, different relation, different structure & emergence

We must have relational simplices

Fig. 6.6 Chemical isomers as relational simplices

Richard Gregory's café wall illusion

$$\left\langle s_{0}\text{, }s_{1}\text{, }....s_{95}\text{ R}_{offset}\right\rangle$$

$$\langle s_0, s_1, \dots s_{95} R_{aligned} \rangle$$

illusion: Squares narrow horizontally

No illusion

A hypernetwork is a set of relational simplices

Hypernetworks augment and are consistent with all other network and hypergraph approaches to systems modelling:

Fig. 6.1 Hypernetworks generalise all the common network structures

Hypernetworks and networks can & should work together

opinions

Person 1

Person 2

Person 1

Person 2

The simplex becomes stable opinions

& internally un-stressed

Person 1

Person 2

Relational Simplices and Multilevel Systems

5.1 Systems of Systems of Systems

Most systems are characterised by having many subsystems and levels of description. They are made up of inextricably entangled multilevel social and physical subsystems with intra-level and inter-level bottom-up and top-top-down dynamics. They are systems of systems. In fact they are systems of systems of systems, and more generally multiple levels of systems of systems.

Fig. 5.1 Systems of systems of systems of systems ...

Multilevel Systems

Can highly entangled multilevel systems separated into well-defined levels?

Multilevel Systems

The Intermediate Word Problem

Multilevel Systems

Fig. 5.4 Intermediate Words for a Hospital System

e.g. take a set of 3 blocks

e.g. take a set of 3 blocks assembled by a 3-ary relation \mathcal{R}

e.g. take a set of 3 blocks assembled by a 3-ary relation \mathcal{R}

The structure has an emergent property

n-ary
relation
assembles
elements
into named
structures at
a higher
level

AND and OR aggregations in multilevel systems

Figure 8. Two different types of multilevel aggregation

Conventional classification trees don't have alpha aggregations

Mereology

Parts and wholes go back millennia to Plato and Aristotle.

mereology was coined in 1927 by Stanislaw Lesniewski

A mereological system is defined to be composed of objects, X, and a binary relation called **parthood**, 'x is a part of y'.

Winston, Chaffin and Herrmann gave six types of meronymic relations:

- 1. component integral object (pedal-bike),
- 2. member-collection (ship-fleet),
- 3. portion-mass (slice-pie),
- 4. stuff-object (steel-car),
- 5. feature-activity (paying-shopping), and
- 6. place-area (Everglades-Florida).

Mereology: e.g. component – integral object

(a) The handle and bowl R_{cup} -assemble into a cup

(b) The cup is (mentally)disassembled under $R_{\text{cup-disassemble}}$ into a handle and a bowl

Fig. 1.21 The handle is part of the cup

Applications

Digital texts are multilevel systems of hypersimplices

Applies to the analysis of policy narrative in Big Data – but may need many relations

Multilevel patterns of numbers on the structure

The simplices form a backcloth for the more dynamic traffic (numbers)

... but there are also backcloth dynamics as relational simplices are formed.

Dynamics on the hypernetwork backcloth

System dynamics as traffic on a fixed multilevel backcloth

e.g. the dynamics of greenhouse gas reduction

Figure 2. discrete micro-dynamic, semi-continuous meso-dynamics and continuous macro-dynamic

3. Policy

Policy is designing the future

Policy as designing the future is *entangled* with complexity science and design

Policy is designing the future

Design is an Intermediate Word Problem

What are the intermediate structures?

What shall we call them?

Policy is designing the future

Innovation involves creating artificial systems

Creating artificial systems involves **Design**

The simplified generate-evaluate model of the design process

Policy is designing the future

Innovation involves creating artificial systems

Creating artificial systems involves **Design**

Fig. 1 The simplified requirements-generate-evaluate model of the design process

Design a co-evolution between what you think you want & what you think you can have

Fig 2. The co-evolution between specification and design through a generate-evaluate spiral.

Design is an iterative *process* – it takes time

Fig 3. Design as bottom-up construction and top-down hypothesis, generation and reasoning.

e.g. Apple
Designed in California
Manufactured in China
Sold worldwide

Manufacturing has lower value than design, IP and marketing

Policy: move to the ends of the smiles for greater added value

e.g. Apple Designed in California Manufactured in China Sold worldwide

Manufacturing has lower value than design, IP and marketing

Policy: move to the ends of the smiles for greater added value

Policy Question: what can the government do to improve innovation in China?

Policy Question: what can the government do to improve innovation in China? necessary but not sufficient ingredients for successful industrial innovation:

Place location with diverse resources and capabilities, e.g. cities

Education school system to develop ability, Advanced Education

Elite with spare time to think (researchers, rich people)

Passion hunger to do something different & desire to make money

Money Money to invest in R&D

Design Design and IP, Marketing

Policy Question: what can the government do to improve innovation in China? necessary but not sufficient ingredients for successful industrial innovation:

Place
Education
Elite
Passion
Money
Design

location with diverse resources and capabilities, e.g. cities school system to develop ability, Advanced Education with spare time to think (researchers, rich people) hunger to do something different & desire to make money Money to invest in R&D Design and IP, Marketing

How can the vertices be assembled to form 5-dimensional hypersimplex

⟨place, education, elite, passion, money, design; R_{innovation}⟩

Policy Question: what can the government do to improve innovation in China?

Which vertices can the Government change?

Policy Question: what can the government do to improve innovation in China?

Which vertices can the Government change?

Are any vertices missing?

If the Government changes the vertices will the simplex form?

Policy Question: what can the government do to improve innovation in China?

This is a multilevel system of systems

Place World > China > Provinces > Cities > innovation clusters > ...

Education Universities > Teaching & Research x Types > ...

Elite academics, research fields – pure, applied > individuals > ...

Passion personality types, behaviours individuals

Money tax breaks, grants, ...

Design specialisms, patents by type, ...

Policy Question: what can the government do to improve innovation in China?

Scientific question: how can the Government know that policy might work?

predicting that an intervention kicks will result in a future target state

Policy Question: what can the government do to improve innovation in China?

Scientific question: how can the Government know that policy might work?

? Multilevel agent based simulations

e.g. micro-simulations at individual levels

Policy Question: what can the government do to improve innovation in China?

Detecting innovation in Big Data

Feature F₁ measured by number of new products sold

Feature F₂ trading patterns with other companies

Feature F₃ trading patterns with individuals

These patterns form relational simplices $\sigma_t = \langle F_1, F_2, F_3; R_t \rangle$

Then may have 'innovation hypersimplices' through time: $\langle \sigma_1, \sigma_2, \sigma_3, \sigma_4, \dots; R \rangle$

Figure 2. discrete micro-dynamic, semi-continuous meso-dynamics and continuous macro-dynamic

System dynamics as traffic on an evolving multilevel backcloth

The 21st century coordination problem: Global Challenges spreading on global webs

Climate change impact, pandemics, financial instability, energy sufficiency, urbanisation

All these challenges spread on global webs and create interdependencies across these global webs: 'systems of systems'. — Multilevel Hypernetworks

Coordination across global webs of different interests, cultures, economic interests becomes a main policy challenge: Policy Design

In such 'system of systems', societies tends to address subsystems (countries, policy sectors....) and so fail to achieve systemic lasting change.

Policies need to be made coherent across webs of influence: Need for Systems approaches.

Ralph Dum:

Global Systems Science as a 3-simplex

- Hypernetworks augment standard network approaches to include relations between many things
- Hypernetworks give a natural way of representing multilevel structure and systems of systems of systems
- Design is the construction of new multilevel systems
- Policy is designing the future
- Science, policy and design are inextricably entangled
- GSS, policy, design & hypernetworks are inextricably entangled