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Information dissipation in networks
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Information is stored in system state, transferred through interactions,
and lost due to noise
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Our view of a complex system

node dynamics + complex network = complex system
A

problem

Each node has a state Nodes interact with each other The system behavior is complex
which it changes over time i.e., their states influence each other compared to an individual node
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Research question

“Which units drive the
behavior of the network?”

e

Peripheral units Intermediately Highly
connected units connected units
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Information processing in complex systems

« Let's say the state of A influences the state of B...

Node A Node B
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Information processing in complex systems

« We would like to ‘see’ influence spreading
state state

interaction
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Information processing in complex systems

» Different influences spread through £
the network simultaneously

\& state

interaction

How to make @

make this ode D
quantitative? \
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Solution: information theory? o e formation

is stored in A?

state

Entropy:
H( ) =
H(A)= _2 Pyilogp,;

How much information
in A is also in B?

state state

Mutual information
I( )=
[(A;B)=H(B)-H(B|A)

(pitfall: MI = causality ~+ correlation) \
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Information dissipation

How long is the information
about a node’'s state =
retained in the network?

4

measures of influence of a single node
on the behavior of the entire network!

L) v

How far can the information
about a node’s statereach —— ¢ >
before it is lost? Information dissipatijn length

Information dissipation time
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v The diminishing role of hubs in
dynamical processes on complex
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Information dissipation time
psi =x|s',..) o eXpE—E(x,S;.)

 Edges represent an interaction potential to which a node can
quasi-equilibrate

> Node dynamics: (local) Gibbs measure
* Network structure

 Large

« Randomized beyond degree distribution

- k__ grows less than linear in NV

max

. And thus locally tree-like
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Information dissipation time °

IF =1(S";s)=1(s/;s)) = H(s))
k :
I = ]([S;I,...,S;k],sf)

AR

k
D(s) = log. .ﬁ[ £ } _loge-log1,

F_

D(s) « const +log I,

K~ TN K K K Nk

If =U(k)-k-T(k), where
T(k)={1(s;"550), -

logc,; +log [

< T) = (H(s) - s 5),

<

Si3

Sin
H(s)) ==Y p(s =q)log p(s; = q)
g
=- E (1-b,")log(1-b,) - E b, logh,™
SN SN
=- 2 (1-b,")log(1-b, ") +k E b, " logb,
=" qe2"
~k Y b, " logb,
S

= O(k-x™).

T(k+1)=a-T(k), where a <1.

|
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Results: analytical and numerical
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Qualitative evidence from experiments

Network of neurons Social network of Gene regulation
cultured in a Petri dish word-of-mouth marketing network
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Applications of IDT and IDL
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Leading
iIndicator
in financial
markets
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Information dissipation as an
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12/01/1998 early-warning signal for the Lehman
_ e Brothers collapse in financial time series
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Cell types in
immune response
and their interactions

Susceptibility of HIV immune
response to perturbation

1 (provirus(to);CD4(t0 + t))
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