Topology of RNA and DNA

Christian M. Reidys

¹University of Southern Denmark

September, 2013

Christian M. Reidys Topology of RNA and DNA

イロト 不同 トイヨト イヨト

æ

< □ > < □ > < □ > < □ > < □ > < □ >

æ

Neutral networks

Reidys, C.M., Stadler, P.F., Schuster, P.K., 1997, *Generic* Properties of Combinatory Maps and Neutral Networks of RNA Secondary Structures, Bull. Math. Biol., **(59)**, 339-397

Secondary structures

Christian M. Reidys Topology of RNA and DNA

Motzkin-path bijection

We translate a diagram without crossing to a path, from (0,0), reading from left to right:

- start point of an arc \longrightarrow up-step
- end point of an arc \longrightarrow down-step
- isolated vertex \longrightarrow horizontal-step

Figure: (a) An up-step when we meet a start point of an arc. (b) A down-step when we meet an end point of an arc. (c) A horizontal-step when we meet an isolated point.

Figure: From a diagram to a path.

ヨトメヨト

æ

From a diagram to a path

Figure: From a diagram to a path.

▶ ★ 国 ▶ …

From a diagram to a path

Figure: From a diagram to a path.

▶ ★ 国 ▶ …

From a diagram to a path

Figure: From a diagram to a path.

Christian M. Reidys Topology of RNA and DNA

▶ ★ 国 ▶ …

From a diagram to a path

Figure: From a diagram to a path.

▶ ★ 国 ▶ …

From a diagram to a path

Figure: From a diagram to a path.

ヨトメヨト

< 一型

From a diagram to a path

Figure: From a diagram to a path.

ヨトメヨト

< 一型

From a diagram to a path

Figure: From a diagram to a path.

ヨトメヨト

< 一型

From a diagram to a path

Figure: From a diagram to a path.

▲ 臣 ▶ ▲ 臣 ▶ …

< 一型

From a diagram to a path

Figure: We obtain a path from (0,0) to (10,0).

<ロ> (四) (四) (三) (三) (三) (三)

Pseudoknot strucures

Figure: The Hepatitis Delta Virus (HDV)-pseudoknot structure represented as a planar graph and as a diagram: we display the structure as folded by the *ab initio* folding algorithm cross (left) and the diagram representation (right).

< 🗇 🕨

More than graphs...

- a secondary structure can be decomposed into "loops",
- to specify a loop requires some kind of "orientation" i.e. how to turn around a vertex,
- its energy is loop-based depends on base pairs, bases and loop-type,
- pseudoknot structures have also a loop-decomposition
- energy is loop-based depends on base pairs, bases and loop-type or even simpler, when flat penalties of crossings are applied.

More than graphs: "fat" graphs

A graph consists of a set of half-edges, *H*, its vertices are subsets of half-edges and its edges are disjoint pairs of half-edges. A fatgraph consists of a set of half-edges, *H* its vertices are cycles of half-edges and its edges are disjoint pairs of half-edges. Thus, a fatgraph is given by (H, σ, α) , where σ is the vertex-permutation and α a fixed-point free involution.

Figure: (A) a graph with 4 vertexes and 4 edges, (B) fattening of a vertex, (C) a fatgraph derived from (A). Any fatgraph induces a

Fatgraphs in the computer

A fatgraph having *n* edges can be presented by

- the vertex permutation σ and the involution α , representing the arcs,
- we can consider the permutation γ = α ∘ σ, whose cycles are called **boundary components**.

Figure: (A) A diagram, (B) a fatgraph of (A) augmented by an additional "rainbow" arc (0,7). (C) collapsing the backbone. Here $\gamma = \alpha \circ \sigma = (0,4,2,6)(1,5,3)(7)$ has two cycles.

Christian M. Reidys

Topology of RNA and DNA

The Poincaré dual

Poincaré dual: Mapping a fatgraph (σ, α) to $(\alpha \circ \sigma, \alpha)$. **Reference:** J Math Biol. 2012, Topological classification and enumeration of RNA structures by genus. Andersen JE, Penner RC, Reidys CM, Waterman MS.

Figure: Bijection between a fatgraph with 1 vertex and 3 boundary components to a fatgraph with 3 vertexes and 1 boundary component.

Unicellular maps

A fatgraph with **one** boundary component is called a *unicellular map*. A *planted* unicellular map contains an additional vertex of degree one serving as its distinuished root.

Figure: A unicellular map with three vertexes. The half-edges belonging to one vertex have the same color. Half-edges of a vertex appear in counterclockwise order, i.e., (0, 4, 2, 6), (1, 5, 3) and (7). The vertex (7) denotes the root of the rooted planar tree.

Two orders

- The tour of the unique boundary component. We write a₁ <_γ a₂ if a₁ appears before a₂ in this tour.
- The order of the half-edges induced by the vertex-cycle.
 We call a₁ <_σ a₂ if a₁ appears before a₂ counterclockwise in the vertex.

Figure: (A) The order of the half-edges appearing in the tour γ : (0, 1, 2, 3, 4, 5, 6, 7). (B) The order of half-edges induces by the vertex-cycles: (0, 4, 2, 6), (1, 5, 3) and (7).

Christian M. Reidys Topology of RNA and DNA

The genus

Let r denote the number of boundary components, v denote the number of vertices and e the number of edges. The genus of the fatgraph is given by Euler's characteristic formula

$$2-2g-r=v-e.$$

Figure: The Poincaré dual preserves the genus.

Gluing

Consider three vertices v₁, v₂ and v₃, v_i = (a_i, h_i¹, ..., h_i^{m_i}), where a_i is the minimum labeled half-edge of v_i,
set v̄ = (a₁, h₂¹, ..., h₂^{m₂}, a₂, h₃¹, ..., h₃^{m₃}, a₃, h₁¹, ..., h₁^{m₁}). We consider v̄ is obtained from by v₁, v₂ and v₃ by "gluing" as follows:

Slicing

Consider

$$\overline{v} = (a_1, h_2^1, \dots, h_2^{m_2}, a_2, h_3^1, \dots, h_3^{m_3}, a_3, h_1^1, \dots, h_1^{m_1})$$

• \overline{v} is sliced into three vertices v_1 , v_2 and v_3 , where $v_i = (a_i, h_i^1, \dots, h_i^{m_i})$.

Figure: Slicing.

э

Intertwined

Definition

Three half-edges a_1 , a_2 and a_3 are intertwined if

 $a_1 <_{\sigma} a_2 <_{\sigma} a_3, \quad a_1 <_{\gamma} a_3 <_{\gamma} a_2.$

Figure: The half-edges 2, 4 and 6 in the vertex cycle (0, 4, 2, 6) are intertwined. We have $2 <_{\gamma} 4 <_{\gamma} 6$ and $4 <_{\sigma} 2 <_{\sigma} 6$.

・ロット (同) ・ ヨット ・ ヨット ・ ヨ

Gluing, slicing and intertwined

Lemma

Chapuy (2011) Gluing three vertices of a fatgraph with one bdc of genus g generates a fatgraph with one bdc of genus g + 1. Furthermore, it produces a vertex having three intertwined half-edges.

Lemma

Chapuy (2011) Slicing a vertex of a fatgraph with one bdc of genus g + 1 with three intertwined half-edges generates a fatgraph with one bdc of genus g.

くロト (得) (目) (日)

Lemma

Chapuy (2011) A planted unicellular map having n edges and genus g contains n + 1 down-steps, n + 1 up-steps and 2g trisections.

Christian M. Reidys Topology of RNA and DNA

イロト イポト イヨト イヨト

э

- remove any isolated vertices,
- replace each stack by a single arc.

Lemma

Reidys (2010) There exist only finitely many shapes of fixed genus g.

Theorem

(Huang-Reidys 2013) The shape polynomial is given by

$$\mathbf{S}_{g}(z) = \sum_{t=0}^{g-1} \kappa_{t}^{(g)} z^{2g+t} (1+z)^{2g+t}, \tag{1}$$

$$\sum_{\substack{0=g_0 < g_1 < \dots < g_r = g \\ 0 = t_0 = t_1 \le t_2 \le \dots \le t_r = r-t}} \prod_{i=1}^r \frac{1}{2g_i} \binom{2g + t - (2g_{i-1} + (i-1)) + t_i}{2(g_i - g_{i-1}) + 1} \times Cat(2g + t - 1)$$

and where $Cat(n) = \frac{1}{n+1} {\binom{2n}{n}}$ and $(t_i)_{r-t}$ is a sequence of integers satisfying $t_1 = 1$, $t_r = r - t$ and $t_i - t_{i-1} = 0$ or 1, $\forall 1 \le i \le r$.

Let $\epsilon_g(n)$ denote the number of unicellular map of genus g having n edges.

Corollary

$$2g \cdot \epsilon_g(n) = \binom{n+1-2(g-1)}{3} \epsilon_{g-1}(n) + \dots + \binom{n+1}{2g+1} \epsilon_0(n).$$
(2)

Here the 2*g*-factor on left hand side counts the number of trisection in \mathfrak{m}_g and the binomial coefficients on the right counts the number of distinct selections of subsets of (2k + 1) vertices from \mathfrak{m}_{g-k} .

$$\epsilon_g(n) = \sum_{\substack{0=a_0 < a_1 < \cdots < a_r = a_i = 1 \\ \text{Christian M Reidys}}} \prod_{\substack{i=1 \\ p_i \neq i = 1 \\ \text{Christian M Reidys}}} \prod_{\substack{n+1-2g_{i-1} \\ 2(g_i - g_{i-1}) + \frac{1}{2}} \cdot \epsilon_0(n), \quad (3)$$

Slice/glue paths

Definition

Suppose m_g is a unicellular map of genus g having n edges. Then a sequence unicellular maps

$$(\mathfrak{m}^0 = \mathfrak{m}_{g_0=0}, \mathfrak{m}^1 = \mathfrak{m}_{g_1}, \dots, \mathfrak{m}^r = \mathfrak{m}_{g_r=g})$$

is called a slice path from \mathfrak{m}_g to \mathfrak{m}_0 and a glue path when considered from \mathfrak{m}_0 to \mathfrak{m}_g , where $\Xi(\mathfrak{m}_{g_i}, \tau_i) = (\mathfrak{m}_{g_{i-1}}, V_{g_{i-1}})$ holds for some τ_i in \mathfrak{m}_{g_i} , $0 < i \leq r$.

< □ > < □ > < □ > < □ > < □ > < □ >

Counting glue-paths

We next consider $P_g(\mathfrak{m}^0)$, the set of distinct glue paths from a given $\mathfrak{m}^0 = \mathfrak{m}_0$ to some unicellular maps of fixed genus *g*.

Lemma

The cardinality of $P_g(\mathfrak{m}^0)$ is

$$\sum_{\substack{0=g_0 < g_1 < \cdots < g_r = g \\ \text{for some } r}} \prod_{i=1}^r \frac{1}{2g_i} \binom{n+1-2g_{i-1}}{2(g_i-g_{i-1})+1}.$$

ヘロト ヘ帰 ト ヘヨト ヘヨト

Uniform generation

Lemma

(Huang-Reidys 2013) There exists a linear time algorithm that generates a glue path p_g with probability $\epsilon_0(n)/\epsilon_g(n)$. Since a tree having n edges can be uniformly generated with probability $1/\epsilon_0(n)$, a matching of genus g having n edges can be generated uniformly.

Reference: Generation of RNA pseudoknot structures with topological genus filtration, MBS, 2013, F.W.D. Huang, M.E. Nebel, C.M. Reidys http://authors.elsevier.com/sd/article/S0025556413001788

イロト イポト イヨト イヨト

We generate a unicellular map of genus *g* having *n* edges with uniform probability splits into two parts:

- we first generate a planar tree m₀ with *n* edges with uniform probability,
- second we generate a glue path from $P_g(\mathfrak{m}^0)$ with uniform probability.

It is well-known how to implement the first step by a linear time sampler and it thus remains to present an linear time algorithm for the second step.

イロト 不得下 不定下 不定下

Uniform generation of interaction structures of fixed topological genus

Corollary

(Han-Reidys 2013)

$$2(g+1)B_{g}(n-1) = \sum_{1 \le i \le g+1} {n+1-2(g+1-i) \choose 2i+1} B_{g-i}(n-1) + \sum_{0 \le g_1 \le g} \sum_{1 \le i \le g_1} \left(\sum_{k \ge 1}^{2i} {m+1-2(g_1-k) \choose k} \times {4 \choose k} \right) \times {n-m-2(g+1-g_1-(i-k)) \choose 2i+1-k} D_{g+1-i}(n-1)$$

Warming up: the identical permutation

Figure: The identity permutation and its tangled diagram.

イロト イポト イヨト イヨト

Constructing the tangled diagram

- given a signed permutation, a number is represented by a vertex,
- each such vertex has two half-edges. If the number it presents is positive, the labeling reads (left to right) (-,+), and (+,-), otherwise,
- there are arcs connecting vertices (i, +) and (i + 1, -),
- arcs are untwisted if they connect two vertices of the same orientation and twisted, otherwise,

ヘロト 人間 とく ヨン 人 ヨン

From tangled diagrams to *p*-diagram

- Given a tangle, first and the last vertex of its *p*-diagram are obtained from splitting the root.
- Each other *p*-diagram vertex is derived by splitting those in the tangled diagram each of them carries one half-edge.
- relabel the vertices in increasing order and connect two subsequent ones.

Lemma

There is a bijection betwee a tangled diagram of signed permutations and p-diagrams. In particular, there is a unique tangle for each p-diagram.

イロト イポト イヨト イヨト

From tangles to *p*-diagrams

Figure: (A) A signed permutation $\pi = (-2, -3, 1)$ and its tangled diagram. The arc connected the root and 3 and the arc connected 1 and 2 are twisted (B) The p-diagram is induced by (A).

.≣⇒

< □ > < 同 > < 回 > <

Figure: The p-diagram D_{π} of $\pi = (-2, -3, 1)$ and its fatgraph. Here the fatgraph consist of three boundary components (red, blue and black). The arrows on the boundaries indicates how to travel a

Topological genus

Euler characteristic and genus are given by

$$\chi(X_D) = \mathbf{v} - \mathbf{e} + \mathbf{r}$$
(5)
$$g(X_D) = \begin{cases} 1 - \frac{1}{2}\chi(X_D), & \text{if } X_D \text{ is orientable,} \\ 1 - \chi(X_D) & \text{if } X_D \text{ is non-orientable.} \end{cases}$$
(6)

Setting $g(\pi) = 2g(X_D)$ if X_D is orientable $andg(\pi) = g(X_D)$ if X_D is non-orientable, $g(\pi)$ can be calculated by

$$g(\pi) = 1 - rac{v - e + r}{2} = rac{(n+1) - r + 1}{2},$$
 (7)

where *n* is the length of π and *r* is the number of boundary components.

The canonical boundary component

Lemma

Let π denote a signed permutation and D is its p-diagram. Then the fatgraph X_D has has a unique boundary component, O^{*}, which travels all intervals [2k, 2k + 1], $\forall 1 \le k \le n$ in the p-diagram.

O*, is called the canonical boundary component.

Projection

Definition

Let π be a signed permutation and D_{π} is its p-diagram. Consider the three adjacent intervals [2k - 1, 2k], [2k, 2k + 1] and [2k + 1, 2k + 2], where the middle interval belongs to O^* . If its adjacent intervals belong to the different boundary components, we call π_k in π **removable**. If π_k is removable we delete it from the tangle and relabel accordingly.

Lemma

A projection preserves the topological genus of a signed permutation.

イロト イポト イヨト イヨト

Figure: (A) a signed permutation $\pi = (-2, -3, 1, 4, 5)$ and its p-diagram. The p-diagram contains 6 arcs and 5 boundary components (O^* is not shown) so it has genus has genus 6 - 5 + 1 = 2. All π_i are removable. (B) Projecting -2 from π we obtain $\pi' = (-2, 1, 3, 4)$ (relabeled) with genus 5 - 4 + 1 = 2. It preserves the genus. However, $\pi_1 = -2$ and $\pi_2 = 1$ become not removable in the new permutation π .

イロト イ押ト イヨト イヨト

Shapes

Definition

A signed permutation π is called a *p*-shape if it is fully contracted.

Figure: (A) A signed permutation $\pi = (-2, -3, 1, 4, 5)$ and its 3 = -5

Christian M. Reidys Topology of RNA and DNA

Property of *p*-shapes

Lemma

If π is a p-shape then D_{π} contains only two boundary components and exactly n arcs. One is the canonical boundary component and the other travels all intervals [2k - 1, 2k], for all $1 \le k \le n$.

Lemma

Assume that π is a shape. If there is at least one twisted arc in D_{π} then the reversal distance of π is $d(\pi) = g(\pi)$ and $d(\pi) = g(\pi) + 1$, otherwise.

ヘロト ヘ戸ト ヘヨト ヘヨト

Reversal distance

Theorem (Hannenhalli, H. and Pevzner, P.)

The reversal distance of π is given by

$$d(\pi) = \begin{cases} b(\pi) - c(\pi) + h(\pi), & \text{if } \pi \text{ is not a fortress,} \\ b(\pi) - c(\pi) + h(\pi) + 1, & \text{if } \pi \text{ is a fortress.} \end{cases}$$

(8)

Figure: (A) The p-diagram of permutation $\pi = (-2, -3, 1)$ and (B) The break-point graph for the same permutation in (A) Here $b(\bar{\pi})$ is the same permutation of (A) Here $b(\bar{\pi})$ is the same permutation

The *p*-shape polynomial

Lemma

For a fixed g > 0, there are finitely many p-shapes.

Let S(z) denote the generating function of *p*-shapes and s_g denote the number of *p*-shapes of genus *g*. Then we have

$$S(z) = \sum_{g>0} s_g z^g.$$
(9)

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Distribution

Length	<i>g</i> = 0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	3	4				
3	1	6	21	20			
4	1	10	65	160	148		
5	1	15	155	701	1620	1348	
6	1	21	315	2247	9324	19068	15104

Table: Distribution of signed permutations of fixed length by their associated topological genera.

イロト 不同 トイヨト イヨト

э

- Combinatorial structures contain often "more" data (e.g. loops in RNA). These can be captured by fattening the original graph, i.e. identifying a cell-complex whose graph is its defomation retract.
- A new paradigm namely "genus induction" naturally arises which allows to recursively construct more and more complex structures.
- The above concepts imply linear time uniform samplers for RNA structures and RNA interaction structures (not shown but similar)

イロト イポト イヨト イヨト

- Topological genus provides a new filtration of RNA structures and has led to topological folding algorithms (see Bioinformatics. 2011 Apr 15;27(8):1076-85)
- Analogue ideas apply for DNA rearrangements, where naturally non-orientable surfaces arise. For instance, Pevzner's reversal agorithm can be given a topological interpretation in terms of shapes.
- Genus induction suggests a normal form for any type of network.

ヘロト ヘ帰 ト ヘヨト ヘヨト