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Neutral networks

Reidys, C.M., Stadler, P.F., Schuster, P.K., 1997, Generic
Properties of Combinatory Maps and Neutral Networks of RNA
Secondary Structures, Bull. Math. Biol., (59), 339-397

Christian M. Reidys Topology of RNA and DNA



Topology of RNA
Maps

Shapes
Uniform generation

Topology of DNA

Secondary structures
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Motzkin-path bijection

We translate a diagram without crossing to a path, from (0, 0),
reading from left to right:

start point of an arc −→ up-step
end point of an arc −→ down-step
isolated vertex −→ horizontal-step

(a)

(b)

(c)

Figure: (a) An up-step when we meet a start point of an arc. (b) A
down-step when we meet an end point of an arc. (c) A horizontal-step
when we meet an isolated point.

Christian M. Reidys Topology of RNA and DNA



Topology of RNA
Maps

Shapes
Uniform generation

Topology of DNA

Example
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Figure: From a diagram to a path.
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From a diagram to a path
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Figure: From a diagram to a path.
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From a diagram to a path

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 100

1
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Figure: We obtain a path from (0, 0) to (10, 0).
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Pseudoknot strucures
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Figure: The Hepatitis Delta Virus (HDV)-pseudoknot structure
represented as a planar graph and as a diagram: we display the
structure as folded by the ab initio folding algorithm cross (left) and
the diagram representation (right).
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More than graphs...

a secondary structure can be decomposed into “loops”,
to specify a loop requires some kind of “orientation”
i.e. how to turn around a vertex,
its energy is loop-based depends on base pairs, bases and
loop-type,
pseudoknot structures have also a loop-decomposition
energy is loop-based depends on base pairs, bases and
loop-type or even simpler, when flat penalties of crossings
are applied.
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5’

3’

(A) (B)
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More than graphs: “fat”graphs

A graph consists of a set of half-edges, H, its vertices are
subsets of half-edges and its edges are disjoint pairs of
half-edges. A fatgraph consists of a set of half-edges, H its
vertices are cycles of half-edges and its edges are disjoint
pairs of half-edges. Thus, a fatgraph is given by (H, σ, α),
where σ is the vertex-permutation and α a fixed-point free
involution.

(A) (B) (C)

Figure: (A) a graph with 4 vertexes and 4 edges, (B) fattening of a
vertex, (C) a fatgraph derived from (A). Any fatgraph induces a
topological surface. Christian M. Reidys Topology of RNA and DNA
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Fatgraphs in the computer

A fatgraph having n edges can be presented by
the vertex permutation σ and the involution α, representing
the arcs,
we can consider the permutation γ = α ◦ σ, whose cycles
are called boundary components.

(A) (B) (C)

1 2 3 4 5 6
1 2 3 4 5 6

5

3 24

6

0 7

01

7

Figure: (A) A diagram, (B) a fatgraph of (A) augmented by an
additional “rainbow” arc (0, 7). (C) collapsing the backbone. Here
γ = α ◦ σ = (0, 4, 2, 6)(1, 5, 3)(7) has two cycles.
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The Poincaré dual

Poincaré dual: Mapping a fatgraph (σ, α) to (α ◦ σ, α).
Reference: J Math Biol. 2012, Topological classification and
enumeration of RNA structures by genus. Andersen JE, Penner RC,
Reidys CM, Waterman MS.

dual
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Figure: Bijection between a fatgraph with 1 vertex and 3 boundary
components to a fatgraph with 3 vertexes and 1 boundary component.
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Unicellular maps

A fatgraph with one boundary component is called a unicellular
map. A planted unicellular map contains an additional vertex of
degree one serving as its distinuished root.

1

52

6

40

7 3

Figure: A unicellular map with three vertexes. The half-edges
belonging to one vertex have the same color. Half-edges of a vertex
appear in counterclockwise order, i.e., (0, 4, 2, 6), (1, 5, 3) and (7).
The vertex (7) denotes the root of the rooted planar tree.

Christian M. Reidys Topology of RNA and DNA



Topology of RNA
Maps

Shapes
Uniform generation

Topology of DNA

Two orders

The tour of the unique boundary component. We write
a1 <γ a2 if a1 appears before a2 in this tour.
The order of the half-edges induced by the vertex-cycle.
We call a1 <σ a2 if a1 appears before a2 counterclockwise
in the vertex.

(A) (B)

1
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Figure: (A) The order of the half-edges appearing in the tour γ:
(0, 1, 2, 3, 4, 5, 6, 7). (B) The order of half-edges induces by the
vertex-cycles: (0, 4, 2, 6), (1, 5, 3) and (7).
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The genus

Let r denote the number of boundary components, v denote
the number of vertices and e the number of edges. The genus
of the fatgraph is given by Euler’s characteristic formula

2 − 2g − r = v − e.

dual
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Figure: The Poincaré dual preserves the genus.
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Gluing

Consider three vertices v1, v2 and v3, vi = (ai , h1
i , . . . , hmi

i ),
where ai is the minimum labeled half-edge of vi ,
set v = (a1, h1

2, . . . , hm2
2 , a2, h1

3, . . . , hm3
3 , a3, h1

1, . . . , hm1
1 ).

We consider v is obtained from by v1, v2 and v3 by “gluing” as
follows:

a1

a2

a3

a3

a1

a2

v1

v3

v2

h1

h11

m1...

h3

h3

1

m3

..
.

h2
1h2

m2 ...

gluing

h2
1h2

m2 ...

h3

h3

1

m3

..
.

h1

h11

m1...

v

Figure: Gluing.
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Slicing

Consider
v = (a1, h1

2, . . . , hm2
2 , a2, h1

3, . . . , hm3
3 , a3, h1

1, . . . , hm1
1 ),

v is sliced into three vertices v1, v2 and v3, where
vi = (ai , h1

i , . . . , hmi
i ).

a1

a2

a3

a3

a1

a2

v1

v3

v2

h1

h11

m1...

h3

h3

1

m3

..
.

h2
1h2

m2 ...

slicing

h2
1h2

m2 ...

h3

h3

1

m3

..
.

h1

h11

m1...

v

Figure: Slicing.
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Intertwined

Definition

Three half-edges a1, a2 and a3 are intertwined if

a1 <σ a2 <σ a3, a1 <γ a3 <γ a2.

1

52

6

40

7 3

Figure: The half-edges 2, 4 and 6 in the vertex cycle (0, 4, 2, 6) are
intertwined. We have 2 <γ 4 <γ 6 and 4 <σ 2 <σ 6.
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Gluing, slicing and intertwined

Lemma

Chapuy (2011) Gluing three vertices of a fatgraph with one bdc
of genus g generates a fatgraph with one bdc of genus g + 1.
Furthermore, it produces a vertex having three intertwined
half-edges.

Lemma

Chapuy (2011) Slicing a vertex of a fatgraph with one bdc of
genus g + 1 with three intertwined half-edges generates a
fatgraph with one bdc of genus g.
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Trisections

Lemma

Chapuy (2011) A planted unicellular map having n edges and
genus g contains n + 1 down-steps, n + 1 up-steps and 2g
trisections.
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Shapes

remove any isolated vertices,
replace each stack by a single arc.

Lemma

Reidys (2010) There exist only finitely many shapes of fixed
genus g.

1 2 3 4 5 6

1 10 20 22

Shape

Figure: The shape of a diagram of genus 1 and its corresponding
Christian M. Reidys Topology of RNA and DNA



Topology of RNA
Maps

Shapes
Uniform generation

Topology of DNA

Theorem

(Huang-Reidys 2013) The shape polynomial is given by

Sg(z) =

g−1
∑

t=0

κ
(g)
t z2g+t(1 + z)2g+t , (1)

∑

0=g0<g1<···<gr =g
0=t0=t1≤t2≤···≤tr =r−t

r
∏

i=1

1
2gi

(

2g + t − (2gi−1 + (i − 1)) + ti
2(gi − gi−1) + 1

)

×Cat(2g + t − 1)

and where Cat(n) = 1
n+1

(2n
n

)

and (ti)r−t is a sequence of
integers satisfying t1 = 1, tr = r − t and ti − ti−1 = 0 or 1,
∀1 ≤ i ≤ r .
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Let ǫg(n) denote the number of unicellular map of genus g
having n edges.

Corollary

2g · ǫg(n) =

(

n + 1 − 2(g − 1)

3

)

ǫg−1(n) + · · · +

(

n + 1
2g + 1

)

ǫ0(n).

(2)

Here the 2g-factor on left hand side counts the number of
trisection in mg and the binomial coefficients on the right counts
the number of distinct selections of subsets of (2k + 1) vertices
from mg−k .

ǫg(n) =
∑

0=g0<g1<···<gr =g

r
∏

i=1

1
2gi

(

n + 1 − 2gi−1

2(gi − gi−1) + 1

)

· ǫ0(n), (3)

where ǫ (n) is the number of planar trees having n edges,
Christian M. Reidys Topology of RNA and DNA
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Slice/glue paths

Definition

Suppose mg is a unicellular map of genus g having n edges.
Then a sequence unicellular maps

(m0 = mg0=0, m
1 = mg1 , . . . ,m

r = mgr =g)

is called a slice path from mg to m0 and a glue path when
considered from m0 to mg , where Ξ(mgi , τi) = (mgi−1 , Vgi−1)
holds for some τi in mgi , 0 < i ≤ r .

Christian M. Reidys Topology of RNA and DNA
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Counting glue-paths

We next consider Pg(m0), the set of distinct glue paths from a
given m

0 = m0 to some unicellular maps of fixed genus g.

Lemma

The cardinality of Pg(m0) is

∑

0=g0<g1<···<gr =g
for some r

r
∏

i=1

1
2gi

(

n + 1 − 2gi−1

2(gi − gi−1) + 1

)

.

Christian M. Reidys Topology of RNA and DNA
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Uniform generation

Lemma

(Huang-Reidys 2013) There exists a linear time algorithm that
generates a glue path pg with probability ǫ0(n)/ǫg(n). Since a
tree having n edges can be uniformly generated with probability
1/ǫ0(n), a matching of genus g having n edges can be
generated uniformly.

Reference: Generation of RNA pseudoknot structures with
topological genus filtration, MBS, 2013, F.W.D. Huang, M.E. Nebel,
C.M. Reidys
http://authors.elsevier.com/sd/article/S0025556413001788
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We generate a unicellular map of genus g having n edges with
uniform probability splits into two parts:

we first generate a planar tree m0 with n edges with
uniform probability,

second we generate a glue path from Pg(m0) with uniform
probability.

It is well-known how to implement the first step by a linear time
sampler and it thus remains to present an linear time algorithm
for the second step.

Christian M. Reidys Topology of RNA and DNA
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Uniform generation of interaction structures of fixed
topological genus

Corollary

(Han-Reidys 2013)

2(g + 1)Bg(n − 1)

=
∑

1≤i≤g+1

(

n + 1 − 2(g + 1 − i)
2i + 1

)

Bg−i(n − 1)

+
∑

0≤g1≤g

∑

1≤i≤g1





2i
∑

k≥1

(

m + 1 − 2(g1 − k)

k

)

×

(

n − m − 2(g + 1 − g1 − (i − k))

2i + 1 − k

))

Dg+1−i(n − 1)

(4)
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Warming up: the identical permutation

1p r

+- +-+-+-

2 3

Figure: The identity permutation and its tangled diagram.
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Constructing the tangled diagram

given a signed permutation, a number is represented by a
vertex,

each such vertex has two half-edges. If the number it
presents is positive, the labeling reads (left to right) (−, +),
and (+,−), otherwise,

there are arcs connecting vertices (i , +) and (i + 1,−),

arcs are untwisted if they connect two vertices of the same
orientation and twisted, otherwise,

Christian M. Reidys Topology of RNA and DNA
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From tangled diagrams to p-diagram

Given a tangle, first and the last vertex of its p-diagram are
obtained from splitting the root.

Each other p-diagram vertex is derived by splitting those in
the tangled diagram each of them carries one half-edge.

relabel the vertices in increasing order and connect two
subsequent ones.

Lemma

There is a bijection betwee a tangled diagram of signed
permutations and p-diagrams. In particular, there is a unique
tangle for each p-diagram.

Christian M. Reidys Topology of RNA and DNA
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From tangles to p-diagrams

2 3 54 761 8

-3-2 1p r

(A)

-3-2 1p

(B)

+- +-+ -+ -

Figure: (A) A signed permutation π = (−2,−3, 1) and its tangled
diagram. The arc connected the root and 3 and the arc connected 1
and 2 are twisted (B) The p-diagram is induced by (A).
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Fatgraphs

1-3-2

1 2 3 4 5 6 7 8

Figure: The p-diagram Dπ of π = (−2,−3, 1) and its fatgraph. Here
the fatgraph consist of three boundary components (red, blue and
black). The arrows on the boundaries indicates how to travel a
boundary component.Christian M. Reidys Topology of RNA and DNA
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Topological genus

Euler characteristic and genus are given by

χ(XD) = v − e + r (5)

g(XD) =

{

1 − 1
2χ(XD), if XD is orientable,

1 − χ(XD) if XD is non-orientable.
(6)

Setting g(π) = 2g(XD) if XD is orientable andg(π) = g(XD) if
XD is non-orientable, g(π) can be calculated by

g(π) = 1 −
v − e + r

2
=

(n + 1) − r + 1
2

, (7)

where n is the length of π and r is the number of boundary
components.

Christian M. Reidys Topology of RNA and DNA
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The canonical boundary component

Lemma
Let π denote a signed permutation and D is its p-diagram. Then
the fatgraph XD has has a unique boundary component, O∗,
which travels all intervals [2k , 2k + 1], ∀1 ≤ k ≤ n in the
p-diagram.

O∗, is called the canonical boundary component.

2 3 54 761 8

-3-2 1p r

(A)

-3-2 1p

(B)

+- +-+ -+ -

Figure: (A) The tour of signed permutation becomes the canonical
boundary component in (B).
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Projection

Definition
Let π be a signed permutation and Dπ is its p-diagram.
Consider the three adjacent intervals [2k − 1, 2k ], [2k , 2k + 1]
and [2k + 1, 2k + 2], where the middle interval belongs to O∗. If
its adjacent intervals belong to the different boundary
components, we call πk in π removable. If πk is removable we
delete it from the tangle and relabel accordingly.

Lemma

A projection preserves the topological genus of a signed
permutation.

Christian M. Reidys Topology of RNA and DNA
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Projection

-2 -3 1 4 5

2 3 8 9 10 11 121 54 76

-2 1 3 4

contract -2

(A) (B)

2 3 8 9 101 54 76

Figure: (A) a signed permutation π = (−2,−3, 1, 4, 5) and its
p-diagram. The p-diagram contains 6 arcs and 5 boundary
components (O∗ is not shown) so it has genus has genus
6 − 5 + 1 = 2. All πi are removable. (B) Projecting −2 from π we
obtain π′ = (−2, 1, 3, 4) (relabeled) with genus 5 − 4 + 1 = 2. It
preserves the genus. However, π1 = −2 and π2 = 1 become not
removable in the new permutation π.

Christian M. Reidys Topology of RNA and DNA
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Shapes

Definition

A signed permutation π is called a p-shape if it is fully
contracted.

1 2 3 4 5 6

1 10 20 22

Shape

Figure: (A) A signed permutation π = (−2,−3, 1, 4, 5) and its
p-diagram Dπ. It contains 6 boundary components and has genus 2.
(B) A shape of (A) obtained by projecting 2, 4 and 5 consequently.
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Property of p-shapes

Lemma

If π is a p-shape then Dπ contains only two boundary
components and exactly n arcs. One is the canonical boundary
component and the other travels all intervals [2k − 1, 2k ], for all
1 ≤ k ≤ n.

Lemma

Assume that π is a shape. If there is at least one twisted arc in
Dπ then the reversal distance of π is d(π) = g(π) and
d(π) = g(π) + 1, otherwise.

Christian M. Reidys Topology of RNA and DNA
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Reversal distance

Theorem (Hannenhalli, H. and Pevzner, P.)

The reversal distance of π is given by

d(π) =

{

b(π) − c(π) + h(π), if π is not a fortress,

b(π) − c(π) + h(π) + 1, if π is a fortress.
(8)

2 35 4 7 61 8

(A)

-3-2 1p

(B)

2 35 4 7 61 8

-3-2 1p

Figure: (A) The p-diagram of permutation π = (−2,−3, 1) and (B)
The break-point graph for the same permutation in (A). Here b(π) is
the horizontal edges in the break-point graph and c(π) is thenChristian M. Reidys Topology of RNA and DNA
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The p-shape polynomial

Lemma

For a fixed g > 0, there are finitely many p-shapes.

Let S(z) denote the generating function of p-shapes and sg

denote the number of p-shapes of genus g. Then we have

S(z) =
∑

g>0

sgzg . (9)

Christian M. Reidys Topology of RNA and DNA
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Distribution

Length g = 0 1 2 3 4 5 6
0 1
1 1 1
2 1 3 4
3 1 6 21 20
4 1 10 65 160 148
5 1 15 155 701 1620 1348
6 1 21 315 2247 9324 19068 15104

Table: Distribution of signed permutations of fixed length by their
associated topological genera.

Christian M. Reidys Topology of RNA and DNA



Topology of RNA
Maps

Shapes
Uniform generation

Topology of DNA

Synopsis I

Combinatorial structures contain often “more” data
(e.g. loops in RNA). These can be captured by fattening
the original graph, i.e. identifying a cell-complex whose
graph is its defomation retract.

A new paradigm namely “genus induction” naturally arises
which allows to recursively construct more and more
complex structures.

The above concepts imply linear time uniform samplers for
RNA structures and RNA interaction structures (not shown
but similar)

Christian M. Reidys Topology of RNA and DNA
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Synopsis II

Topological genus provides a new filtration of RNA
structures and has led to topological folding algorithms
(see Bioinformatics. 2011 Apr 15;27(8):1076-85)

Analogue ideas apply for DNA rearrangements, where
naturally non-orientable surfaces arise. For instance,
Pevzner’s reversal agorithm can be given a topological
interpretation in terms of shapes.

Genus induction suggests a normal form for any type of
network.

Christian M. Reidys Topology of RNA and DNA
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